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LETTER
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After a brief summary of early work, involving the present authors, relating to
low coordination phases of some alkalis in either dense crystalline states at high
pressure (e.g. Li) or low density metallic fluids near criticality (Cs and Rb),
contact is made with the very recent density functional study by Pickard and
Needs (Phys. Rev. Lett. 102, 146401 (2009)). Whereas these authors predict three-
and four-fold coordination numbers for extremely high pressure crystalline
phases of Li, we stress here the remarkable behaviour of the heavy alkali metallic
fluids Cs and Rb along the liquid–vapour coexistence curve towards the critical
point. Coordination numbers �8�10 near melting then reduce, as the density is
lowered, to 2 at or near the critical point.

Keywords: fluid alkalis; high pressure; liquid–vapour coexistence

Both the authors have been involved in early work on some of the alkali metals, in

different phases and under somewhat extreme conditions. Thus, in [1], light crystalline

alkali metals were studied theoretically by using the extended Hubbard Hamiltonian. In

this work, the prediction was made that under high pressure the body-centred-cubic (bcc)

light alkali metals should be unstable towards less symmetric phases. Subsequently, the

same authors [2] stressed that experimental findings [3–5] have confirmed the tendency of

the light alkali metals to lower their symmetry under sufficient compression.
In contrast, in the highly expanded heavy alkalis Cs and Rb, but now in the liquid

metallic phase, one of us [6,7] considered their behaviour along the liquid–vapour

coexistence curve (LVCC) towards the critical point. This work utilised the neutron

diffraction measurements of Hensel et al. [8,9] to represent their experimental data on the

mass density d, for coordination number z, by

d ¼ azþ b: ð1Þ
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For the dense metallic fluid Cs, along the LVCC towards the critical density
dc¼ 380 kgm�3, Freeman and March [10] record the values a¼ 230 kgm�3 and
b¼�80 kgm�3. The relative constancy [9] of the nearest neighbour (NN) bond length
as the density d is lowered lends strong support to the viewpoint that a chemical bond is
the basic building block in Cs, and also in Rb, in these highly expanded fluid metals.
Freeman and March [10] refer in these cases to a rather constant bond length
�0.54�0.57 nm.

This brings us to the basic motivation for reopening the low coordination numbers
inferred in the early references [1] and [2] for light solid alkalis, and for the highly
expanded fluid metals Cs and Rb, represented by Equation (1). Near d¼ dc, z tends to 2
for Cs using the values of dc, a and b cited above. This Letter is then motivated by the very
recent density functional (DFT) study by Pickard and Needs [11] on dense low-
coordination phases of crystalline metallic Li. In particular, using DFT plus a structure-
searching technique, these authors predict low-coordination crystals under high pressure.
More specifically, their predictions are: (a) for three-fold coordinated structures to be
stable in the pressure range 40–450GPa; and (b) for four-fold coordination at higher
pressures.

In more detail, to summarise the findings of Pickard and Needs [11], their theoretical
predictions as to the characteristics of the ground-state electron density in the high-
pressure Li structures they advocate, are as follows. The valence electrons appear to move
away from the ions and take up interstitial locations which are rather isolated from each
other. Also, the occupied valence band widths of the high-pressure crystalline phases are
narrower than the corresponding free-electron predictions, which accords with the
viewpoint expressed by Rousseau and Ashcroft [12].

In concluding this Letter, we find remarkable the fact that while at ambient pressure,
there is a high coordination number for both crystalline (bcc) Li and also for the heavy
metallic fluids Rb abnd Cs near their melting temperatures Tm, one gets, if one adopts the
theoretical solid-state predictions of [11], low-coordination numbers z� 3 or 4 for Li under
extreme high pressures and z reducing from high values �8–10 for fluid Rb and Cs near Tm

to �2 for Cs near the critical point. The formation of chains has been proposed by one of
us [6,7] as leading to a Peierls instability coincident with the critical point. It is relevant in
this context to mention, following Freeman and March [10], that, subsequent to the
experiments of Hensel et al. [8,9] focused on above, Whitman et al. [14] have reported the
structural properties of Cs adsorbed on room temperature GaAs(110) and InSb(110)
surfaces, as observed by means of scanning tunnelling microscopy. These authors
demonstrate that Cs initially forms long, one-dimensional (1D) zig–zag chains on both
surfaces. For example, their Figure 1a [14] shows in particular a large-area image of

Table 1. Critical constants: pressure, number density, temperature and compres-
sibility ratio, Zc¼ pc/�cRTc, for the alkali metals (after [13]).

Element pc (MPa) �c (10
�4m�3mol) Tc (K) Zc

Li 30.4 1.701 3344 0.064
Na 25.22 0.917 2.497 0.132
K 15.95 0.490 2239 0.175
Rb 12.45 0.341 2017 0.217
Cs 9.25 0.285 1924 0.203
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Cs chains on GaAs(110), including chains extending over �100 nm. For further details,
reference can be made to [10] and [14]. The final comment concerns future experimental
studies. It would, of course, be interesting to extend the experiments of Hensel et al. [8,9] to
other alkalis. Some progress should be possible for say K, along the LVCC, but as Table 1
shows, the critical regimes become less accessible experimentally for the lighter alkalis than
for Rb and Cs.
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